483 research outputs found

    Next-generation sequencing: applications beyond genomes.

    Get PDF
    The development of DNA sequencing more than 30 years ago has profoundly impacted biological research. In the last couple of years, remarkable technological innovations have emerged that allow the direct and cost-effective sequencing of complex samples at unprecedented scale and speed. These next-generation technologies make it feasible to sequence not only static genomes, but also entire transcriptomes expressed under different conditions. These and other powerful applications of next-generation sequencing are rapidly revolutionizing the way genomic studies are carried out. Below, we provide a snapshot of these exciting new approaches to understanding the properties and functions of genomes. Given that sequencing-based assays may increasingly supersede microarray-based assays, we also compare and contrast data obtained from these distinct approaches

    Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma

    Get PDF
    Molecularly targeted agents with anti-angiogenic activity, including bevacizumab, have demonstrated clinical activity in patients with advanced /metastatic hepatocellular carcinoma (HCC). This multicentre phase II study involving patients from several Asian countries sought to evaluate the safety and efficacy of bevacizumab plus capecitabine in this population. METHODS: Histologically proven/clinically diagnosed advanced HCC patients received bevacizumab 7.5 mg kg(-1) on day 1 and capecitabine 800 mg m(-2) twice daily on days 1-14 every 3 weeks as first-line therapy. RESULTS: A total of 45 patients were enrolled; 44 (96%) had extrahepatic metastasis and/or major vessel invasion and 30( 67%) had hepatitis B. No grade 3/4 haematological toxicity occurred. Treatment-related grade 3/4 non-haematological toxicities included diarrhoea (n = 2, 4%), nausea/ vomiting ( n = 1, 2%), gastrointestinal bleeding (n = 4, 9%) and hand- foot syndrome (n = 4, 9%). The overall response rate ( RECIST) was 9% and the disease control rate was 52%. Overall , median progression-free survival (PFS) and overall survival(OS) were 2.7 and 5.9 months, respectively. Median PFS and OS were 3.6 and 8.2 months, respectively, for Cancer of the Liver Italian Programme (CLIP) score <= 3 patients, and 1.4 and 3.3 months, respectively, for CLIP score 4 patients. CONCLUSION: The bevacizumab-capecitabine combination shows good tolerability and modest anti-tumour activity in patients with advanced HCC

    Comprehensive comparative analysis of strand-specific RNA sequencing methods

    Get PDF
    Strand-specific, massively parallel cDNA sequencing (RNA-seq) is a powerful tool for transcript discovery, genome annotation and expression profiling. There are multiple published methods for strand-specific RNA-seq, but no consensus exists as to how to choose between them. Here we developed a comprehensive computational pipeline to compare library quality metrics from any RNA-seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we compared seven library-construction protocols, including both published and our own methods. We found marked differences in strand specificity, library complexity, evenness and continuity of coverage, agreement with known annotations and accuracy for expression profiling. Weighing each method's performance and ease, we identified the dUTP second-strand marking and the Illumina RNA ligation methods as the leading protocols, with the former benefitting from the current availability of paired-end sequencing. Our analysis provides a comprehensive benchmark, and our computational pipeline is applicable for assessment of future protocols in other organisms.Howard Hughes Medical InstituteUnited States-Israel Binational Science Foundatio

    CNV-seq, a new method to detect copy number variation using high-throughput sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations.</p> <p>Results</p> <p>Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads.</p> <p>Conclusion</p> <p>Simulation of various sequencing methods with coverage between 0.1× to 8× show overall specificity between 91.7 – 99.9%, and sensitivity between 72.2 – 96.5%. We also show the results for assessment of CNV between two individual human genomes.</p

    Establishing the baseline level of repetitive element expression in the human cortex

    Get PDF
    Background: Although nearly half of the human genome is comprised of repetitive sequences, the expression profile of these elements remains largely uncharacterized. Recently developed high throughput sequencing technologies provide us with a powerful new set of tools to study repeat elements. Hence, we performed whole transcriptome sequencing to investigate the expression of repetitive elements in human frontal cortex using postmortem tissue obtained from the Stanley Medical Research Institute. Results: We found a significant amount of reads from the human frontal cortex originate from repeat elements. We also noticed that Alu elements were expressed at levels higher than expected by random or background transcription. In contrast, L1 elements were expressed at lower than expected amounts. Conclusions: Repetitive elements are expressed abundantly in the human brain. This expression pattern appears to be element specific and can not be explained by random or background transcription. These results demonstrate that our knowledge about repetitive elements is far from complete. Further characterization is required to determine the mechanism, the control, and the effects of repeat element expression

    SeqGene: a comprehensive software solution for mining exome- and transcriptome- sequencing data

    Get PDF
    Abstract Background The popularity of massively parallel exome and transcriptome sequencing projects demands new data mining tools with a comprehensive set of features to support a wide range of analysis tasks. Results SeqGene, a new data mining tool, supports mutation detection and annotation, dbSNP and 1000 Genome data integration, RNA-Seq expression quantification, mutation and coverage visualization, allele specific expression (ASE), differentially expressed genes (DEGs) identification, copy number variation (CNV) analysis, and gene expression quantitative trait loci (eQTLs) detection. We also developed novel methods for testing the association between SNP and expression and identifying genotype-controlled DEGs. We showed that the results generated from SeqGene compares favourably to other existing methods in our case studies. Conclusion SeqGene is designed as a general-purpose software package. It supports both paired-end reads and single reads generated on most sequencing platforms; it runs on all major types of computers; it supports arbitrary genome assemblies for arbitrary organisms; and it scales well to support both large and small scale sequencing projects. The software homepage is http://seqgene.sourceforge.net.</p

    Revealing the missing expressed genes beyond the human reference genome by RNA-Seq

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complete and accurate human reference genome is important for functional genomics researches. Therefore, the incomplete reference genome and individual specific sequences have significant effects on various studies.</p> <p>Results</p> <p>we used two RNA-Seq datasets from human brain tissues and 10 mixed cell lines to investigate the completeness of human reference genome. First, we demonstrated that in previously identified ~5 Mb Asian and ~5 Mb African novel sequences that are absent from the human reference genome of NCBI build 36, ~211 kb and ~201 kb of them could be transcribed, respectively. Our results suggest that many of those transcribed regions are not specific to Asian and African, but also present in Caucasian. Then, we found that the expressions of 104 RefSeq genes that are unalignable to NCBI build 37 in brain and cell lines are higher than 0.1 RPKM. 55 of them are conserved across human, chimpanzee and macaque, suggesting that there are still a significant number of functional human genes absent from the human reference genome. Moreover, we identified hundreds of novel transcript contigs that cannot be aligned to NCBI build 37, RefSeq genes and EST sequences. Some of those novel transcript contigs are also conserved among human, chimpanzee and macaque. By positioning those contigs onto the human genome, we identified several large deletions in the reference genome. Several conserved novel transcript contigs were further validated by RT-PCR.</p> <p>Conclusion</p> <p>Our findings demonstrate that a significant number of genes are still absent from the incomplete human reference genome, highlighting the importance of further refining the human reference genome and curating those missing genes. Our study also shows the importance of <it>de novo </it>transcriptome assembly. The comparative approach between reference genome and other related human genomes based on the transcriptome provides an alternative way to refine the human reference genome.</p

    HMMSplicer: A Tool for Efficient and Sensitive Discovery of Known and Novel Splice Junctions in RNA-Seq Data

    Get PDF
    Background: High-throughput sequencing of an organism’s transcriptome, or RNA-Seq, is a valuable and versatile new strategy for capturing snapshots of gene expression. However, transcriptome sequencing creates a new class of alignment problem: mapping short reads that span exon-exon junctions back to the reference genome, especially in the case where a splice junction is previously unknown. Methodology/Principal Findings: Here we introduce HMMSplicer, an accurate and efficient algorithm for discovering canonical and non-canonical splice junctions in short read datasets. HMMSplicer identifies more splice junctions than currently available algorithms when tested on publicly available A. thaliana, P. falciparum, and H. sapiens datasets without a reduction in specificity. Conclusions/Significance: HMMSplicer was found to perform especially well in compact genomes and on genes with low expression levels, alternative splice isoforms, or non-canonical splice junctions. Because HHMSplicer does not rely on prebuilt gene models, the products of inexact splicing are also detected. For H. sapiens, we find 3.6 % of 39 splice sites and 1.4% of 59 splice sites are inexact, typically differing by 3 bases in either direction. In addition, HMMSplicer provides a score for every predicted junction allowing the user to set a threshold to tune false positive rates depending on the needs of the experiment. HMMSplicer is implemented in Python. Code and documentation are freely available a

    Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human

    Get PDF
    Background: Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5'-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences. Results: We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5' cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these, more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events revealed striking similarities between the chicken and human transcriptomes while also providing explanations for previously observed genomic differences. Conclusions: Our results indicate that the chicken transcriptome is similar in complexity compared to human, and provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to rapidly expand our knowledge of transcriptomics
    corecore